Saint Theresa College

P A R V A P A R V O R U M P U L C H R A

SECONDARY SCHOOL - IMRIEHEL
 HALF-YEARLY EXAMINATIONS 2016/2017

FORM: 3
PNYSICS

Name: \qquad Class: \qquad

- Answer all the questions.
- Write down your answers in the spaces provided.
- The use of a calculator is allowed.
- Whenever necessary take g to be $10 \mathrm{~N} / \mathrm{kg}$.

Formulae that can be used are listed below:

Density	$\rho=\frac{\mathrm{m}}{\mathrm{V}}$
Force	$\mathrm{W}=\mathrm{mg}$
	Moment = Force \times perpendicular distance
	$\mathrm{P}=\underline{\mathrm{F}}$
	A
	$\mathrm{P}=\mathrm{hpg}$

Question	1	2	3	4	5	6	7	8	9	10	Total Marks	Practical Mark	Final Mark
Mark	5	6	7	3	6	7	6	15	15	15	85	15	100
Score													

1. This question is about Measurements.

(a) Read the volume of the liquid in the measuring cylinder:
\qquad
(b) Fill in the following table:

Quantity	Symbol	S.I. Unit
	l	m
Mass		kg
Density		$\mathrm{kg} / \mathrm{m}^{3}$
Time	t	
Force	F	
	P	Pa
Volume		

[4 marks]

2. This question is about Forces

(a) Draw and label the forces acting on the following diagrams:

Girl sitting on a pile of books

Paper boat floating on water

A moving truck
(b) Find the resultant force acting on the following objects stating both the size and direction

[3 marks]

3. This question is about Weight

(a) Sky the dog has a mass of 25 kg .

i. Calculate the weight of the dog here on Earth
\qquad
\qquad
[2 marks]
ii. Sky was taken to the Moon where gravity is $1.62 \mathrm{~N} / \mathrm{kg}$. Calculate the weight of Sky on the Moon.
\qquad
\qquad
[1 mark]
iii. Why does the weight of Sky change on the Moon?
\qquad
\qquad
[1 mark]
iv. Will the mass of the dog change on different planets?
\qquad
[1 mark]
(b) Circle the vectors from the following list of quantities:

Time, weight, friction, volume
[2 marks]

4. This question is about Centre of Gravity

On the diagrams below mark and label the centre of gravity as c.g.

5. This question is about Pressure

Julia has a formal ceremony at the St John's Co-Cathedral in Valletta. She decides to wear heels for the occasion.
(a) Julia's mass is 60 kg . Find her weight.
\qquad [1 mark]
(b) The area of one shoe is $0.02 \mathrm{~m}^{2}$. Calculate the area as Julia stands on both feet.
\qquad
\qquad
(c) Find the pressure which Julia exerts on the ground when standing on both feet.
\qquad
\qquad
(d) As soon as she arrived at the cathedral, Julia was not allowed to enter because of her shoes. Explain why.
\qquad
\qquad

[2 marks]
6. This question is about Density.
a) Density is the mass per unit \qquad
b) Gregory had an Olympic medal and wanted to find its density. He found its mass to be $\mathbf{1 1 6 g}$.

Then he immersed it in a measuring cylinder, and the reading of the water level increased from $\mathbf{6 0} \mathbf{c m}^{\mathbf{3}}$ to $\mathbf{7 1} \mathbf{c m}^{\mathbf{3}}$.
(i) Calculate the volume of the Olympic medal.
\qquad
(ii) Hence calculate the density of the Olympic medal.
\qquad
\qquad
\qquad [3 marks]
c) The table on the right gives the densities of some materials. From which material do you think the medal is made of?

Material	Density $\mathbf{g} / \mathbf{c m}^{\mathbf{3}}$
Bronze	7.6
Silver	10.5
Gold	19.3

d) One day, while jogging, Gregory noticed an orange floating in a pond. Given that the density of water is $1 \mathrm{~g} / \mathrm{cm}^{3}$, suggest a value for the density of an orange.
\qquad

7. This question is about moments

a) Moment of a force can be found by multiplying the \qquad with the perpendicular \qquad from the force to the pivot
b) Jean and Sarah are repairing an old bicycle.
i. On the diagram, mark the pivot with an (\mathbf{x}) [1 mark]
ii. If the perpendicular distance from the force to the pivot is 0.3 m and the maximum force Jean and Sarah exert is that of $110 N$, calculate the moment produced.

0.3 m
\qquad
\qquad
\qquad [2 marks]
iii. The maximum force exerted by Jean and Sarah was not enough to turn the nut. Since they cannot increase the force, suggest another way how to increase the moment.
\qquad
\qquad

8. This question is about Hooke's Law

John found three different springs. He wanted to investigate whether all springs extend in the same way when equal masses are attached to each spring using the set up as shown.
a) The table shows the different lengths at which each spring extends when the same mass was added.

SPRING	LENGTH OF SPRING (CM)
A	7
B	10
C	5

i. Which spring is the stiffest out of all three? Why?
\qquad [2 marks]
ii. Underline the upward force which the spring must exert to support the masses attached:
weight, tension, friction
[1 mark]
b) John takes spring A and attaches different weights to it. He records the different extension in a table below.

Load (N)	0	1	2	3	4	5	6	7
Length of spring (cm)	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5
Extension $(\mathbf{c m})$	0.5	1.0		2.0		3.0		

i. What is the original length of the spring when it is unloaded?
\qquad [1 mark]
ii. Complete the missing values in the table.
iii. Plot a graph of Extension (cm) on the y-axis against Load (N) on the x-axis.

Scale: Take $\mathbf{4 c m}$ to represent 0.5 cm on \mathbf{y}-axis and 2 cm to represent 1 N on x -axis.
iv. Hooke's Law states that the \qquad is directly proportional to the \qquad applied unless the \qquad limit is not exceeded. [3 marks]
v. From the graph determine the Extension of the spring produced with a force of 3.5 N .

9. This question is about Density

At the beginning of a scholastic year, Julia bought a new rubber whose dimensions were found to be 0.06 m by 2.5 cm by $\mathbf{1 c m}$.

a. Change: $0.06 \mathrm{~m}=$ \qquad cm
b. Calculate the volume of the block in $\mathbf{c m}^{3}$.
\qquad
\qquad
\qquad
c. Given that the rubber has a mass of 16.5 g , calculate the density of the rubber.
\qquad
\qquad
\qquad
d. After using this rubber for 3 months, Julia's rubber was no longer regular in shape and much smaller. She wanted to calculate the density of the rubber.

Complete the method of the experiment carried out by using some of the words below.
subtract, add, electronic balance, mass, volume, rubber, measuring cylinder
i. Place the rubber on an \qquad and read its mass.
ii. Fill the \qquad with water and read its \qquad .
iii. Gently lower the \qquad in the measuring cylinder and read the new volume.
iv. Then \qquad the two volumes.
e. Write down 2 precautions needed to obtain an accurate result during this experiment.
\qquad
\qquad
\qquad [2 marks]
f. Underline the correct statement:

- The mass of the rubber (increases, remains the same, decreases).
- The volume of the rubber (increases, remains the same, decreases).
- The density of the rubber (increases, remains the same, decreases).
[3 marks]

10. This question is about Moments

a. Fill in the blanks: The Principle of Moments states that when the system is in equilibrium, the total \qquad moment is equal to the total
\qquad moment.
b. Equilibrium occurs when the total \qquad forces is equal to the total
\qquad forces.
c. The \boldsymbol{S}. I. unit of moments is \qquad .
d. A wooden shelf of mass 2 kg and 1.5 m long is attached to the wall by a hinge. A mass of 4 kg is placed at 0.3 m from pivot A as shown in the diagram.

i. On the diagram mark the weight of the wooden shelf with an (\mathbf{x})
ii. Calculate the weight of the wooden shelf.
\qquad
\qquad
iii. Calculate the weight of the 4 kg mass.
\qquad
iv. Calculate the distance between the weight of the shelf and the pivot
\qquad
\qquad
v. Calculate the moment produced by the wooden shelf
\qquad
\qquad
vi. Calculate the moment produced by the 4 kg mass
\square [1 mark]
vii. What is the total clockwise moment?
\qquad
viii. Given the system is in equilibrium, what is the anti-clockwise moment?
\qquad
ix. Find the force \mathbf{F} in order for the system to be in equilibrium.
\qquad [2 marks]

