

# SECONDARY SCHOOL - IMRIEHEL

## HALF-YEARLY EXAMINATIONS

Track 2

## 2016/2017

| FORM: 3 | PHYSICS | Time: 1½ hrs |
|---------|---------|--------------|
|         |         |              |

Name:\_\_\_\_\_

Class:

- Answer all the questions.
- Write down your answers in the spaces provided.
- The use of a calculator is allowed.
- Whenever necessary take g to be 10N/kg.



Formulae that can be used are listed below:

| Density  | $\rho = \frac{m}{V}$                    |
|----------|-----------------------------------------|
| Force    | W = mg                                  |
|          | Moment = Force x perpendicular distance |
| Pressure | $P = \underline{F}$                     |
|          | P = hpg                                 |

| Question | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8  | 9  | 10 | Total<br>Marks | Practical<br>Mark | Final<br>Mark |
|----------|---|---|---|---|---|---|---|----|----|----|----------------|-------------------|---------------|
| Mark     | 5 | 6 | 7 | 3 | 6 | 7 | 6 | 15 | 15 | 15 | 85             | 15                | 100           |
| Score    |   |   |   |   |   |   |   |    |    |    |                |                   |               |

## SECTION A.

### 1. This question is about Measurements.

(a) Read the volume of the liquid in the measuring cylinder:

[1 mark]

(b) Fill in the following table:

| Quantity | Symbol | S.I. Unit         |
|----------|--------|-------------------|
|          | I      | m                 |
| Mass     |        | kg                |
| Density  |        | kg/m <sup>3</sup> |
| Time     | t      |                   |
| Force    | F      |                   |
|          | Р      | Pa                |
| Volume   |        |                   |

80cm<sup>3</sup>

[4 marks]

## 2. This question is about Forces

(a) Draw and label the forces acting on the following diagrams:







Girl sitting on a pile of books

Paper boat floating on water

A moving truck

[3 marks]

(b) Find the **resultant force** acting on the following objects stating both the **size** and **direction** 



[3 marks]

## 3. This question is about Weight

(a) Sky the dog has a mass of 25kg.

i. Calculate the weight of the dog here on Earth



[2 marks]

Physics – Form 3 Secondary – Track 2 – 2017

Page **3** of **13** 

| ii.            | Sky was taken to                    | the Moon wh    | nere gravity i   | s 1.62N/kg. ( | Calculate |
|----------------|-------------------------------------|----------------|------------------|---------------|-----------|
|                | the <b>weight</b> of S              | Sky on the M   | oon.             |               |           |
|                |                                     |                |                  |               |           |
|                |                                     |                |                  |               | [1 mark]  |
| iii.           | Why does the we                     | ight of Sky cl | nange on the     | e Moon?       |           |
|                |                                     |                |                  |               |           |
|                |                                     |                |                  |               | [1 mark]  |
| iv.            | Will the mass of th                 | ie dog chan    | ge on differe    | ent planets?  |           |
|                |                                     |                |                  |               | [1 mark]  |
|                |                                     |                |                  |               |           |
| (b) <u>Cii</u> | r <u>cle</u> the <b>vectors</b> fro | m the follow   | ring list of que | antities:     |           |
|                | Time,                               | weight,        | friction,        | volume        |           |
|                |                                     |                |                  |               | [2 marks] |
|                |                                     |                |                  |               |           |

## 4. This question is about Centre of Gravity

On the diagrams below **mark** and **label** the centre of gravity as **c.g**.



[3 marks]

#### 5. This question is about Pressure



Julia has a formal ceremony at the St John's Co-Cathedral in Valletta. She decides to wear heels for the occasion.

(a) Julia's mass is 60 kg. Find her **weight**.

\_\_\_\_\_ [1 mark]

(b) The area of one shoe is 0.02m<sup>2</sup>. Calculate the **area** as Julia stands on *both feet*.

[1 mark]

(c) Find the **pressure** which Julia exerts on the ground when standing on both feet.

\_\_\_\_\_ [2 marks]

(d) As soon as she arrived at the cathedral, Julia was **not** allowed to enter because of her shoes. Explain **why**.



[2 marks]

- 6. This question is about Density.
- a) **Density** is the <u>mass</u> per unit \_\_\_\_\_
- b) Gregory had an Olympic medal and wanted to find its density. He found its mass to be 116g.



[1 mark]

Physics – Form 3 Secondary – Track 2 – 2017

Page **5** of **13** 

Then he immersed it in a measuring cylinder, and the reading of the water level increased from **60cm<sup>3</sup>** to **71cm<sup>3</sup>**.

(i) Calculate the **volume** of the Olympic medal. [1 mark] Hence calculate the **density** of the Olympic medal. (ii) \_\_\_\_\_ [3 marks] c) The table on the right gives the densities of some Material Density g/cm<sup>3</sup> materials. From which material do you think the Bronze 7.6 medal is made of? Silver 10.5

Gold

[1 mark]

19.3

 d) One day, while jogging, Gregory noticed an orange floating in a pond. Given that the density of water is 1g/cm<sup>3</sup>, suggest a value for the **density** of an orange.



## 7. This question is about moments

- a) Moment of a force can be found by multiplying the \_\_\_\_\_ with the perpendicular \_\_\_\_\_ from the force to the pivot [2 marks]
- b) Jean and Sarah are repairing an old bicycle.
  - i. On the diagram, mark the pivotwith an (x) [1 mark]
  - ii. If the perpendicular distance from the force to the pivot is 0.3m and the <u>maximum</u> force Jean and Sarah exert is that of 110N, calculate the **moment** produced.





 iii. The maximum force exerted by Jean and Sarah was not enough to turn the nut. Since they cannot increase the force, suggest another way how to increase the moment.

[1 mark]

This section carries 45marks

## 8. This question is about Hooke's Law

John found three different springs. He wanted to investigate whether all springs extend in the same way when equal masses are attached to each spring using the set up as shown.

 a) The table shows the different lengths at which each spring extends when the same mass was added.

| SPRING | LENGTH OF   |
|--------|-------------|
|        | SPRING (CM) |
| A      | 7           |
| В      | 10          |
| С      | 5           |



i. Which spring is the *stiffest* out of all three? Why?

ii. **Underline** the upward force which the spring must exert to support the masses attached:

weight, tension, friction [1 mark]

[2 marks]

b) John takes spring A and attaches different weights to it. He records the different extension in a table below.

| Load (N)                 | 0   | 1   | 2   | 3   | 4   | 5   | 6   | 7   |
|--------------------------|-----|-----|-----|-----|-----|-----|-----|-----|
| Length of<br>spring (cm) | 1.0 | 1.5 | 2.0 | 2.5 | 3.0 | 3.5 | 4.0 | 4.5 |
| Extension<br>(cm)        |     | 0.5 | 1.0 |     | 2.0 |     | 3.0 |     |

i. What is the **original length** of the spring when it is unloaded?

\_\_\_\_\_ [1 mark]

- ii. Complete the missing values in the table. [2 marks]
- iii. Plot a graph of Extension (cm) on the y-axis against Load (N) on the x-axis.

## Scale: Take **4cm to represent 0.5cm on y-axis** and **2cm to represent 1N on x-axis**. [5 marks]

- iv. Hooke's Law states that the \_\_\_\_\_\_\_ is directly proportional to the \_\_\_\_\_\_\_ applied unless the \_\_\_\_\_\_ limit is not exceeded.
   [3 marks]
- v. From the graph determine the **Extension** of the spring produced with a force of 3.5 N.

\_\_\_\_\_ [1 mark]

| 9. This   | question is about Density                                                                                                                                      | C. 25                       |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| new ru    | beginning of a scholastic year, Julia bought a<br>Jubber whose dimensions were found to be<br>h by <b>2.5 cm</b> by <b>1 cm</b> .                              | EEEE                        |
| a.        | Change: 0.06 m =cm                                                                                                                                             | [1 mark]                    |
| b.        | Calculate the <b>volume</b> of the block in <b>cm<sup>3</sup></b> .                                                                                            |                             |
|           |                                                                                                                                                                | [2 marks]                   |
|           | Given that the rubber has a mass of 16.5g, calculate the <b>der</b><br>rubber.                                                                                 | nsity of the                |
|           |                                                                                                                                                                | _ [2 marks]                 |
| d.        | After using this rubber for 3 months, Julia's rubber was no<br>longer regular in shape and much smaller. She wanted to<br>calculate the density of the rubber. | 0                           |
|           | Complete the <b>method</b> of the experiment carried out by using <u>some</u> of the words below.                                                              |                             |
|           | subtract, add, electronic balance, mass, volume, rubber, measuring                                                                                             | cylinder                    |
|           | i. Place the rubber on an and mass.                                                                                                                            | read its                    |
|           | ii. Fill the with wate                                                                                                                                         | r and read                  |
| Physics - | - Form 3 Secondary – Track 2 – 2017                                                                                                                            | Page <b>10</b> of <b>13</b> |

| iii. | Gently lower the     | _ in the measuring cylinder and |
|------|----------------------|---------------------------------|
|      | read the new volume. |                                 |

iv. Then \_\_\_\_\_\_ the two volumes.

[5 marks]

e. Write down **2 precautions** needed to obtain an accurate result during this experiment.

\_\_\_\_\_[2 marks]

- f. Underline the correct statement:
  - The mass of the rubber (increases, remains the same, decreases).
  - The **volume** of the rubber (increases, remains the same, decreases).
  - The **density** of the rubber (increases, remains the same, decreases).

[3 marks]

#### 10. This question is about Moments

| a. Fill in the blanks: The Principle of Momer | <b>nts states that</b> when the system is |
|-----------------------------------------------|-------------------------------------------|
| in equilibrium, the total                     | _ moment is equal to the total            |
| moment.                                       | [2 marks]                                 |
| b. Equilibrium occurs when the total          | forces is equal to the total              |
| forces.                                       | [2 marks]                                 |

c. The S. I. unit of moments is \_\_\_\_\_. [1 mark]

 A wooden shelf of mass 2kg and 1.5m long is attached to the wall by a hinge. A mass of 4kg is placed at 0.3m from pivot A as shown in the diagram.



- i. On the diagram <u>mark</u> the **weight** of the wooden shelf with an (x)
  [1 mark]
- ii. Calculate the weight of the wooden shelf.

|                                                                                    | [1 mark] |
|------------------------------------------------------------------------------------|----------|
| iii. <u>Calculate</u> the <b>weight</b> of the 4 kg mass.                          |          |
|                                                                                    | [1 mark] |
| iv. <u>Calculate</u> the <b>distance</b> between the weight of the shelf and pivot | the      |
|                                                                                    | [1 mark] |
| v. <u>Calculate</u> the <b>moment</b> produced by the wooden shelf                 |          |
|                                                                                    | [1 mark] |

|                                                                                            | [1 mark] |
|--------------------------------------------------------------------------------------------|----------|
| vii. What is the <b>total clockwise moment</b> ?                                           |          |
|                                                                                            | [1 mark] |
|                                                                                            |          |
| viii. Given the system is <u>in equilibrium</u> , what is the <b>a</b>                     |          |
| ,                                                                                          |          |
| viii. Given the system is <u>in equilibrium</u> , what is the <b>a</b> r<br><b>moment?</b> |          |